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DISCLAIMER

This report does not constitute financial advice, and Saulidity is
not accountable or liable for any negative consequences
resulting from this report, nor may Saulidity be held liable in
any way. You agree to the terms of this disclaimer by reading
any part of the report. If you do not agree to the terms, please
stop reading this report immediately and delete and destroy
any and all copies of this report that you have downloaded
and/or printed. This report was entirely based on information
given by the audited party and facts that existed prior to the
audit. Saulidity and its auditors cannot be held liable for any
outcome, including modifications (if any) made to the
contract(s) for the audit that was completed. No modifications
have been made to the contract(s) by the Saulidity team, but if
it does, it will be indicated explicitly. The audit does not include
the project team, website, logic, or tokenomics, but if it does, it
will be indicated explicitly. The security is evaluated only on the
basis of smart contracts only. There were no security checks
performed on any apps or activities. There hasn't been a review
of any product codes. It is assumed by Saulidity that the
information and materials given were not tampered with,
censored, or misrepresented. Even if this report exists and
Saulidity makes every effort to uncover any security flaws, you
should not rely completely on it and should conduct your own
independent research. Saulidity hereby excludes all liability and
responsibility, and neither you nor any other person shall have
any claim against Saulidity, for any amount or kind of loss or
damage that may result to you or any other person or any kind
of company, community, association and institution. Saulidity
is the exclusive owner of this report, and it is published by
Saulidity. Without Saulidity's express written authorization, use
of this report for any reason other than a security interest in the
individual contacts, or use of sections of this report, is
forbidden.
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Saulidity

Saulidity is a renowned cybersecurity firm
specializing in the analysis and development
of Smart contracts. Saulidity, as a full-service
security organization, can help with a variety
of audits and project development.

In a market where confidence and trust are
key, a genuine project may simply increase its
user base enormously with an official audit
performed by Saulidity.
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Introduction

For a thorough understanding of the audit, please read
the entire document.

The goal of the audit was to find any potential smart
contract security problems and vulnerabilities.

The information in this report should be used to
understand the smart contract's risk exposure and as a
guide to improving the smart contract's security posture
by addressing the concerns that were discovered.

During our audit, we conducted a thorough inquiry using
automated analysis and manual review approaches.

The security specialists did a complete study
independently of one another in order to uncover any
security issues in the contracts as comprehensively as
feasible. For optimum security and professionalism, all of
our audits are undertaken by at least two independent
auditors.

The audit was carried out on contracts that had not yet
been deployed. The project's website, logic, or
tokenomics have not been vetted by the Saulidity team.
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Scope

We analyze smart contracts for both well-known and
more specific vulnerabilities.

Here are some of the most well-known vulnerabilities that
are taken into account but not limited to:;:

 Reentrancy

« Timestamp Dependence

 Gas Limit and Loops

* DoS with (Unexpected) Throw
 DoS with Block Gas Limit
 Transaction-Ordering Dependence
» Style guide violation

 Transfer forwards all gas

« ERC20 API violation

« Compiler version not fixed
 Unchecked external call - Unchecked math
 Unsafe type inference

« Implicit visibility level
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Audit &
Project Information

Project Name

Coorest

Contract Name

Coorest.sol
TrueCoorest.sol
CC02.sol
PoCC.sol

Report ID

SAUL91000 V1.1

Nebsite

Coorest.io

Contact

Nick Zwaneveld

Contact
Information

nickacoorest.eu

Code language

SAULIDITY AUDIT

Solidity



mailto:nick@coorest.eu

Summary Table

SEVERITY FOUND
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Executive Summary

ACCORDING TO THE ANALYSIS, THERE ARE 0 CRITICAL, O HIGH, 0
MEDIUM AND O LOW SEVERITY SECURITY VULNERABILITIES.

IT SHOULD BE NOTED THAT ALL FINDINGS WERE MITIGATED BY THE
CLIENT.

ALL ISSUES FOUND DURING ANALYSIS WERE MANUALLY REVIEWED, AND
FALSE POSITIVES WERE ELIMINATED. THE FINDINGS ARE PRESENTED IN
THE ANALYSIS SECTION OF THE REPORT.
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Inheritance
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Inheritance
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Inheritance

TrueCoorest.sol
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Inheritance
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Inheritance
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Call Graph

Coorest.sol
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Call Graph

TrueCoorest.sol

Internal Call
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Call Graph

Internal Call
External Call
Defined Contract
Undefined Contract
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Analysis

Coorest.sol

Issue: Usage of too many digits,
Severity: Lowest / Clean Coding / .Optimized Practice
Location: L34

Description: Literals with many digits are difficult
to read and review.

uint256 constant MILLISECONDS_IN_YEAR = 31536000000;

Recommendation: We recommend using the scientific
notation with ether units suffix instead (ie: 50e6
ether).

e Ether suffix
e Time suffix
e The scientific notation

Status: Mitigated
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Analysis

Coorest.sol

Issue: Possibility to declare public function as
external.

Severity:

Location: L51-76, L78-81, L83-92, L94-103, L107-115,
L117-125, L129-141, L171-222, L225-235, L239-241,
L243-245

Description: In order to save gas, public functions
that are never called by the contract could be
declared external.

Comment: We recommend to consider using the external
attribute for functions that are never called from
the contract.

Status: Mitigated
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Analysis

Coorest.sol

Issue: Version of Solidity.
Severity:
Location: General

Description: It's worth noting that some pragma
versions are more frequently used by Solidity
programmers and have been thoroughly tested in
several security audits.There is a json file in the
Solitidy Github repository that lists all defects
found in various compiler versions.

Comment: If at all feasible, use the most recent
stable pragma version that has been carefully tested
to avoid any unknown vulnerabilities.

Consider deploying with any of the following
Solidity versions:

e 0.5.16 - 0.5.17
e 0.6.11 - 0.6.12
e 0.7.5 - 0.7.6
e 0.8.4 - 0.8.7

Status: Mitigated
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Analysis

Coorest.sol

Issue: Lock pragmas to a specific compiler version.
Severity:
Location: General

Description: The current pragma Solidity directive
is not locked to a fixed version.

pragma solidity >=0.4.22 <0.9.0;

Comment: It's best to specify a fixed compiler
version to guarantee that the bytecode generated 1is
consistent across builds. Locking the pragma helps
ensure that contracts do not accidentally get
deployed using, for example, that latest compiler,
which may have a higher risker of undiscovered
bugs.This is especially significant if the code is
verified at the bytecode level.

Status: Mitigated
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Analysis

TrueCoorest.sol

Issue: Possibility to declare public function as
external.

Severity:

Location: L48-53, L76-78, L82-84, L97-103, L107-109,
L111-113

Description: In order to save gas, public functions
that are never called by the contract could be
declared external.

Comment: We recommend to consider using the external
attribute for functions that are never called from
the contract.

Status: Mitigated
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Analysis

TrueCoorest.sol

Issue: Version of Solidity.
Severity:
Location: General

Description: It's worth noting that some pragma
versions are more frequently used by Solidity
programmers and have been thoroughly tested in
several security audits.There is a json file in the
Solitidy Github repository that lists all defects
found in various compiler versions.

Comment: If at all feasible, use the most recent
stable pragma version that has been carefully tested
to avoid any unknown vulnerabilities.

Consider deploying with any of the following
Solidity versions:

e 0.5.16 - 0.5.17
e 0.6.11 - 0.6.12
e 0.7.5 - 0.7.6
e 0.8.4 - 0.8.7

Status: Mitigated
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Analysis

TrueCoorest.sol

Issue: Lock pragmas to a specific compiler version.
Severity:
Location: General

Description: The current pragma Solidity directive
is not locked to a fixed version.

pragma solidity >=0.4.22 <0.9.0;

Comment: It's best to specify a fixed compiler
version to guarantee that the bytecode generated 1is
consistent across builds. Locking the pragma helps
ensure that contracts do not accidentally get
deployed using, for example, that latest compiler,
which may have a higher risker of undiscovered
bugs.This is especially significant if the code is
verified at the bytecode level.

Status: Mitigated
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Analysis

CCO2.sol

Issue: Possibility to declare public function as
external.

Severity:

Location: L37-59, L63-71, L73-80, L82-89, L91-98,
L100-107, L111-125, L127-142, L192-194, L196-198

Description: In order to save gas, public functions
that are never called by the contract could be
declared external.

Comment: We recommend to consider using the external
attribute for functions that are never called from
the contract.

Status: Mitigated
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Analysis

CCO2.sol

Issue: Version of Solidity.
Severity:
Location: General

Description: It's worth noting that some pragma
versions are more frequently used by Solidity
programmers and have been thoroughly tested in
several security audits.There is a json file in the
Solitidy Github repository that lists all defects
found in various compiler versions.

Comment: If at all feasible, use the most recent
stable pragma version that has been carefully tested
to avoid any unknown vulnerabilities.

Consider deploying with any of the following
Solidity versions:

e 0.5.16 - 0.5.17
e 0.6.11 - 0.6.12
e 0.7.5 - 0.7.6
e 0.8.4 - 0.8.7

Status: Mitigated
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Analysis

CCO2.sol

Issue: Lock pragmas to a specific compiler version.
Severity:
Location: General

Description: The current pragma Solidity directive
is not locked to a fixed version.

pragma solidity >=0.4.22 <0.9.0;

Comment: It's best to specify a fixed compiler
version to guarantee that the bytecode generated 1is
consistent across builds. Locking the pragma helps
ensure that contracts do not accidentally get
deployed using, for example, that latest compiler,
which may have a higher risker of undiscovered
bugs.This is especially significant if the code is
verified at the bytecode level.

Status: Mitigated
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Analysis

PoCC.sol

Issue: Possibility to declare public function as
external.

Severity:

Location: L37-51, L53-65, L67-77, L83-103, L114-120,
L132-134, L136-138

Description: In order to save gas, public functions
that are never called by the contract could be
declared external.

Comment: We recommend to consider using the external
attribute for functions that are never called from
the contract.

Status: Mitigated
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Analysis

PoCC.sol

Issue: Version of Solidity.
Severity:
Location: General

Description: It's worth noting that some pragma
versions are more frequently used by Solidity
programmers and have been thoroughly tested in
several security audits.There is a json file in the
Solitidy Github repository that lists all defects
found in various compiler versions.

Comment: If at all feasible, use the most recent
stable pragma version that has been carefully tested
to avoid any unknown vulnerabilities.

Consider deploying with any of the following
Solidity versions:

e 0.5.16 - 0.5.17
e 0.6.11 - 0.6.12
e 0.7.5 - 0.7.6
e 0.8.4 - 0.8.7

Status: Mitigated
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Analysis

PoCC.sol

Issue: Lock pragmas to a specific compiler version.
Severity:
Location: General

Description: The current pragma Solidity directive
is not locked to a fixed version.

pragma solidity >=0.4.22 <0.9.0;

Comment: It's best to specify a fixed compiler
version to guarantee that the bytecode generated 1is
consistent across builds. Locking the pragma helps
ensure that contracts do not accidentally get
deployed using, for example, that latest compiler,
which may have a higher risker of undiscovered
bugs.This is especially significant if the code is
verified at the bytecode level.

Status: Mitigated
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Testing Standards

The goal of the audit was to find

any potential smart contract security
problems and vulnerabilities.

The information in this report

should be used to understand the smart
contract’'s risk exposure and

as a guide to improving the smart contract's
security posture by addressing the concerns
that were discovered.

The blockchain platform is used to deploy and
execute smart contracts. The platform, its
programming language, and other smart
contract-related applications all have
vulnerabilities that may be exploited. As a
result, the audit cannot ensure the audited
smart contract(s) explicit security.Audits
can't make statements or warranties on
security of the code.It also cannot be deemed
an adequate assessment of the code's wutility
and safety, bug-free status, or any
statements of the smart contract.

While we did our best in completing the study
and publishing this report, it is crucial to
emphasize that you should not rely only on
it; we advocate all projects doing many
independent audits and participating in a
public bug bounty program to assure smart
contract security.



Testing Standards

1. Gather all relevant data.

2. Perform a preliminary visual
examination of all documents and
contracts.

3. Find security holes with
specialist tools & manual review
with independent experts.

4. Create and distribute a
report.
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