
SMART CONTRACT
SECURITY ANALYSIS

PRESENTED TO
Coorest.io

PREPARED BY
Saulidity

2022

SECURITY
REPORT

SAULIDITY
2 0 2 2

saul id i ty.com
Saul id i ty
@Saul id i ty

Smart Contract
Audit

This report does not constitute financial advice, and Saulidity is
not accountable or liable for any negative consequences
resulting from this report, nor may Saulidity be held liable in
any way. You agree to the terms of this disclaimer by reading
any part of the report. If you do not agree to the terms, please
stop reading this report immediately and delete and destroy
any and all copies of this report that you have downloaded
and/or printed. This report was entirely based on information
given by the audited party and facts that existed prior to the
audit. Saulidity and its auditors cannot be held liable for any
outcome, including modifications (if any) made to the
contract(s) for the audit that was completed. No modifications
have been made to the contract(s) by the Saulidity team, but if
it does, it will be indicated explicitly. The audit does not include
the project team, website, logic, or tokenomics, but if it does, it
will be indicated explicitly. The security is evaluated only on the
basis of smart contracts only. There were no security checks
performed on any apps or activities. There hasn't been a review
of any product codes. It is assumed by Saulidity that the
information and materials given were not tampered with,
censored, or misrepresented. Even if this report exists and
Saulidity makes every effort to uncover any security flaws, you
should not rely completely on it and should conduct your own
independent research. Saulidity hereby excludes all liability and
responsibility, and neither you nor any other person shall have
any claim against Saulidity, for any amount or kind of loss or
damage that may result to you or any other person or any kind
of company, community, association and institution. Saulidity
is the exclusive owner of this report, and it is published by
Saulidity. Without Saulidity's express written authorization, use
of this report for any reason other than a security interest in the
individual contacts, or use of sections of this report, is
forbidden.

DISCLAIMER

SAULIDITY AUDIT 1

Table of Contents

Saulidity

Introduction

02

03

Scope

Summary Table

04

05

06

Audit & Project Information

Executive Summary

Inheritance

07

08

Call Graph

Analysis

13

17

Testing Standards30

SAULIDITY AUDIT 2

Saulidity

Saulidity is a renowned cybersecurity firm
specializing in the analysis and development
of Smart contracts. Saulidity, as a full-service
security organization, can help with a variety
of audits and project development.

In a market where confidence and trust are
key, a genuine project may simply increase its
user base enormously with an official audit
performed by Saulidity.

SAULIDITY AUDIT 3

Introduction

For a thorough understanding of the audit, please read
the entire document.

The goal of the audit was to find any potential smart
contract security problems and vulnerabilities.
The information in this report should be used to
understand the smart contract's risk exposure and as a
guide to improving the smart contract's security posture
by addressing the concerns that were discovered.

During our audit, we conducted a thorough inquiry using
automated analysis and manual review approaches.

The security specialists did a complete study
independently of one another in order to uncover any
security issues in the contracts as comprehensively as
feasible. For optimum security and professionalism, all of
our audits are undertaken by at least two independent
auditors.

The audit was carried out on contracts that had not yet
been deployed. The project's website, logic, or
tokenomics have not been vetted by the Saulidity team.

SAULIDITY AUDIT 4

Scope

We analyze smart contracts for both well-known and
more specific vulnerabilities.

Here are some of the most well-known vulnerabilities that
are taken into account but not limited to:

• Reentrancy
• Timestamp Dependence
• Gas Limit and Loops
• DoS with (Unexpected) Throw
• DoS with Block Gas Limit
• Transaction-Ordering Dependence
• Style guide violation
• Transfer forwards all gas
• ERC20 API violation
• Compiler version not fixed
• Unchecked external call - Unchecked math
• Unsafe type inference
• Implicit visibility level

Project Name Coorest

Contract Name

Coorest.sol
TrueCoorest.sol

CCO2.sol
PoCC.sol

Report ID SAUL91000 V1.1

Website Coorest.io

Contact Nick Zwaneveld

 Contact
Information nick@coorest.eu

Code language Solidity

Audit &
Project Information

SAULIDITY AUDIT 5

mailto:nick@coorest.eu

SEVERITY FOUND

Critical 0

High 0

Medium 0

Low 0

Lowest / Code Style /
Optimized Practice 13

Summary Table

SAULIDITY AUDIT 6

SAULIDITY AUDIT 7

Executive Summary

ACCORDING TO THE ANALYSIS, THERE ARE 0 CRITICAL, 0 HIGH, 0
MEDIUM AND 0 LOW SEVERITY SECURITY VULNERABILITIES.

IT SHOULD BE NOTED THAT ALL FINDINGS WERE MITIGATED BY THE
CLIENT.

ALL ISSUES FOUND DURING ANALYSIS WERE MANUALLY REVIEWED, AND
FALSE POSITIVES WERE ELIMINATED. THE FINDINGS ARE PRESENTED IN
THE ANALYSIS SECTION OF THE REPORT.

SAULIDITY AUDIT 8

Inheritance
Coorest.sol

SAULIDITY AUDIT 9

Inheritance
TrueCoorest.sol

SAULIDITY AUDIT 1 0

Inheritance
TrueCoorest.sol

SAULIDITY AUDIT 1 1

Inheritance
CCO2.sol

SAULIDITY AUDIT 1 2

Inheritance
POCC.sol

Coorest

IPOCC (iface) ICCO2 (iface)

IERC1155 (iface) ITrueCoorestMerkleProofUpgradeable

Legend

<Constructor>

initialize

ensureIsNotZeroAddr

__AccessControl_init

__UUPSUpgradeable_init

_grantRole

ITrueCoorest

setMerkleRoot

merkleRootSet

setNFTreesContractAddress

addressSetsetCO2ContractAddress

setPOCCContractAddress

setTrueCoorestContractAddress

getNftreeIdToLastClaimDate

_claimCO2ForTree

checkProjectStatus

mint

claimCO2

_verify

CO2Claimed

balanceOf

mintPOCC

returnedPoccID

safeMint

burn

pause

_pauseunpause

_unpause

InvalidProjectStatus

getProjectHistoryverify

_authorizeUpgrade

Internal Call
External Call

Defined Contract
Undefined Contract

Call Graph
Coorest.sol

SAULIDITY AUDIT 1 3

SAULIDITY AUDIT

TrueCoorest

Chainlink.RequestLinkTokenInterface

Legend

<Constructor> _grantRole

setChainlinkToken

setChainlinkOracle

updateProjectStatus

requestProjectStatus

statusUpdated

buildChainlinkRequest

sendChainlinkRequest

addInt

add

fulfill

convertByteToString

ProjectStatusUpdatedsetJobId

getProjectHistory

ensureIsNotZeroAddr

withdrawLink LinkTokenInterface

chainlinkTokenAddress

transfer

balanceOf

pause

_pause

unpause

_unpause

Internal Call
External Call

Defined Contract
Undefined Contract

1 4

Call Graph
TrueCoorest.sol

SAULIDITY AUDIT

CCO2

UUPSUpgradeable

Legend

<Constructor>

initialize

ensureIsNotZeroAddr

__ERC20_init

__Pausable_init

__AccessControl_init

__ERC20Permit_init

__UUPSUpgradeable_init

_grantRole

setCoorestWalletAddress

changedCoorestWalletAddress

setMintingPercentage changedValue

setBurningPercentage

setTransactionPercentage

setDecimalRatio

mint _mint

mintedCO2Token

burn

balanceOf

_transfer

_burn

burnedCO2Token

transfer

transferFrom

allowance

_spendAllowance

pause

_pause

unpause

_unpause

_beforeTokenTransfer

_beforeTokenTransfer

_authorizeUpgrade

Internal Call
External Call

Defined Contract
Undefined Contract

Call Graph
CCO2.sol

1 5

SAULIDITY AUDIT

POCC

CountersUpgradeable.Counter

UUPSUpgradeable

Legend

<Constructor>

initialize

__ERC721_init

__ERC721URIStorage_init

__Pausable_init

__AccessControl_init

__UUPSUpgradeable_init

_grantRole

getPoccDetails

current

setURI

setNewURI

_baseURI

safeMint

_safeMint

_setTokenURI

POCCStruct

newPoccIsMinted

increment

tokenURI

tokenURI

setTokenURI

_burn

_burn

pause

_pause

unpause

_unpause

_beforeTokenTransfer

_beforeTokenTransfer

_authorizeUpgrade

supportsInterface

supportsInterface

Internal Call
External Call

Defined Contract
Undefined Contract

Call Graph
POCC.sol

1 6

SAULIDITY AUDIT 1 7

Ether suffix
Time suffix
The scientific notation

Issue: Usage of too many digits,

Severity: Lowest / Clean Coding / Optimized Practice

Location: L34

Description: Literals with many digits are difficult
to read and review.

Recommendation: We recommend using the scientific
notation with ether units suffix instead (ie: 50e6
ether).

Analysis
Coorest.sol

Status: Mitigated

SAULIDITY AUDIT 1 8

Issue: Possibility to declare public function as
external.

Severity: Lowest / Code Style / Optimized Practice

Location: L51-76, L78-81, L83-92, L94-103, L107-115,
L117-125, L129-141, L171-222, L225-235, L239-241,
L243-245

Description: In order to save gas, public functions
that are never called by the contract could be
declared external.

Analysis
Coorest.sol

Comment: We recommend to consider using the external
attribute for functions that are never called from
the contract.

Status: Mitigated

SAULIDITY AUDIT 1 9

Analysis
Coorest.sol

0.5.16 - 0.5.17
0.6.11 - 0.6.12
0.7.5 - 0.7.6
0.8.4 - 0.8.7

Issue: Version of Solidity.

Severity: Lowest / Clean Coding / Optimized Practice

Location: General

Description: It's worth noting that some pragma
versions are more frequently used by Solidity
programmers and have been thoroughly tested in
several security audits.There is a json file in the
Solitidy Github repository that lists all defects
found in various compiler versions.

Comment: If at all feasible, use the most recent
stable pragma version that has been carefully tested
to avoid any unknown vulnerabilities.

Consider deploying with any of the following
Solidity versions:

Status: Mitigated

SAULIDITY AUDIT 20

Issue: Lock pragmas to a specific compiler version.

Severity: Lowest / Clean Coding / Optimized Practice

Location: General

Description: The current pragma Solidity directive
is not locked to a fixed version.

Comment: It's best to specify a fixed compiler
version to guarantee that the bytecode generated is
consistent across builds. Locking the pragma helps
ensure that contracts do not accidentally get
deployed using, for example, that latest compiler,
which may have a higher risker of undiscovered
bugs.This is especially significant if the code is
verified at the bytecode level.

Analysis
Coorest.sol

Status: Mitigated

SAULIDITY AUDIT 2 1

Issue: Possibility to declare public function as
external.

Severity: Lowest / Code Style / Optimized Practice

Location: L48-53, L76-78, L82-84, L97-103, L107-109,
L111-113

Description: In order to save gas, public functions
that are never called by the contract could be
declared external.

Analysis
TrueCoorest.sol

Comment: We recommend to consider using the external
attribute for functions that are never called from
the contract.

Status: Mitigated

SAULIDITY AUDIT 22

Analysis
TrueCoorest.sol

0.5.16 - 0.5.17
0.6.11 - 0.6.12
0.7.5 - 0.7.6
0.8.4 - 0.8.7

Issue: Version of Solidity.

Severity: Lowest / Clean Coding / Optimized Practice

Location: General

Description: It's worth noting that some pragma
versions are more frequently used by Solidity
programmers and have been thoroughly tested in
several security audits.There is a json file in the
Solitidy Github repository that lists all defects
found in various compiler versions.

Comment: If at all feasible, use the most recent
stable pragma version that has been carefully tested
to avoid any unknown vulnerabilities.

Consider deploying with any of the following
Solidity versions:

Status: Mitigated

SAULIDITY AUDIT 23

Issue: Lock pragmas to a specific compiler version.

Severity: Lowest / Clean Coding / Optimized Practice

Location: General

Description: The current pragma Solidity directive
is not locked to a fixed version.

Comment: It's best to specify a fixed compiler
version to guarantee that the bytecode generated is
consistent across builds. Locking the pragma helps
ensure that contracts do not accidentally get
deployed using, for example, that latest compiler,
which may have a higher risker of undiscovered
bugs.This is especially significant if the code is
verified at the bytecode level.

Analysis
TrueCoorest.sol

Status: Mitigated

SAULIDITY AUDIT 24

Issue: Possibility to declare public function as
external.

Severity: Lowest / Code Style / Optimized Practice

Location: L37-59, L63-71, L73-80, L82-89, L91-98,
L100-107, L111-125, L127-142, L192-194, L196-198

Description: In order to save gas, public functions
that are never called by the contract could be
declared external.

Analysis
CCO2.sol

Comment: We recommend to consider using the external
attribute for functions that are never called from
the contract.

Status: Mitigated

SAULIDITY AUDIT 25

Analysis
CCO2.sol

0.5.16 - 0.5.17
0.6.11 - 0.6.12
0.7.5 - 0.7.6
0.8.4 - 0.8.7

Issue: Version of Solidity.

Severity: Lowest / Clean Coding / Optimized Practice

Location: General

Description: It's worth noting that some pragma
versions are more frequently used by Solidity
programmers and have been thoroughly tested in
several security audits.There is a json file in the
Solitidy Github repository that lists all defects
found in various compiler versions.

Comment: If at all feasible, use the most recent
stable pragma version that has been carefully tested
to avoid any unknown vulnerabilities.

Consider deploying with any of the following
Solidity versions:

Status: Mitigated

SAULIDITY AUDIT 26

Issue: Lock pragmas to a specific compiler version.

Severity: Lowest / Clean Coding / Optimized Practice

Location: General

Description: The current pragma Solidity directive
is not locked to a fixed version.

Comment: It's best to specify a fixed compiler
version to guarantee that the bytecode generated is
consistent across builds. Locking the pragma helps
ensure that contracts do not accidentally get
deployed using, for example, that latest compiler,
which may have a higher risker of undiscovered
bugs.This is especially significant if the code is
verified at the bytecode level.

Analysis
CCO2.sol

Status: Mitigated

SAULIDITY AUDIT 27

Issue: Possibility to declare public function as
external.

Severity: Lowest / Code Style / Optimized Practice

Location: L37-51, L53-65, L67-77, L83-103, L114-120,
L132-134, L136-138

Description: In order to save gas, public functions
that are never called by the contract could be
declared external.

Analysis
PoCC.sol

Comment: We recommend to consider using the external
attribute for functions that are never called from
the contract.

Status: Mitigated

SAULIDITY AUDIT 28

Analysis
PoCC.sol

0.5.16 - 0.5.17
0.6.11 - 0.6.12
0.7.5 - 0.7.6
0.8.4 - 0.8.7

Issue: Version of Solidity.

Severity: Lowest / Clean Coding / Optimized Practice

Location: General

Description: It's worth noting that some pragma
versions are more frequently used by Solidity
programmers and have been thoroughly tested in
several security audits.There is a json file in the
Solitidy Github repository that lists all defects
found in various compiler versions.

Comment: If at all feasible, use the most recent
stable pragma version that has been carefully tested
to avoid any unknown vulnerabilities.

Consider deploying with any of the following
Solidity versions:

Status: Mitigated

SAULIDITY AUDIT 29

Issue: Lock pragmas to a specific compiler version.

Severity: Lowest / Clean Coding / Optimized Practice

Location: General

Description: The current pragma Solidity directive
is not locked to a fixed version.

Comment: It's best to specify a fixed compiler
version to guarantee that the bytecode generated is
consistent across builds. Locking the pragma helps
ensure that contracts do not accidentally get
deployed using, for example, that latest compiler,
which may have a higher risker of undiscovered
bugs.This is especially significant if the code is
verified at the bytecode level.

Analysis
PoCC.sol

Status: Mitigated

SAULIDITY AUDIT 30

Testing Standards

The goal of the audit was to find
any potential smart contract security
problems and vulnerabilities.
The information in this report
should be used to understand the smart
contract's risk exposure and
as a guide to improving the smart contract's
security posture by addressing the concerns
that were discovered.

The blockchain platform is used to deploy and
execute smart contracts. The platform, its
programming language, and other smart
contract-related applications all have
vulnerabilities that may be exploited. As a
result, the audit cannot ensure the audited
smart contract(s) explicit security.Audits
can't make statements or warranties on
security of the code.It also cannot be deemed
an adequate assessment of the code's utility
and safety, bug-free status, or any
statements of the smart contract.
While we did our best in completing the study
and publishing this report, it is crucial to
emphasize that you should not rely only on
it; we advocate all projects doing many
independent audits and participating in a
public bug bounty program to assure smart
contract security.

SAULIDITY AUDIT 3 1

Testing Standards

1. Gather all relevant data.

2. Perform a preliminary visual
examination of all documents and
contracts.

3. Find security holes with
specialist tools & manual review
with independent experts.

4. Create and distribute a
report.

saul id i ty.com
Saul id i ty
@Saul id i ty

Smart Contract
Audit

